Top sqlite Questions

List of Tags
Mike Willekes

Optimizing SQLite is tricky. Bulk-insert performance of a C application can vary from 85 inserts-per-second to over 96 000 inserts-per-second!

Background: We are using SQLite as part of a desktop application. We have large amounts of configuration data stored in XML files that are parsed and loaded into an SQLite database for further processing when the application is initialized. SQLite is ideal for this situation because it's fast, it requires no specialized configuration and the database is stored on disk as a single file.

Rationale: Initially I was disappointed with the performance I was seeing. It turns-out that the performance of SQLite can vary significnatly (both for bulk-inserts and selects) depending on how the database is configured and how you're using the API. It was not a trivial matter to figure-out what all of the options and techniques were, so I though it prudent to create this community wiki entry to share the results with SO readers in order to save others the trouble of the same investigations.

The Experiment: Rather than simply talking about performance tips in the general sense (i.e. "Use a transaction!"), I thought it best to write some C code and actually measure the impact of various options. We're going to start with some simple data:

  • A 28 meg TAB-delimited text file (approx 865000 records) of the complete transit schedule for the city of Toronto
  • My test machine is a 3.60 GHz P4 running Windows XP.
  • The code is compiled with MSVC 2005 as "Release" with "Full Optimization" (/Ox) and Favor Fast Code (/Ot).
  • I'm using the SQLite "Amalgamation", compiled directly into my test application. The SQLite version I happen to have is a bit older (3.6.7), but I suspect these results will be comparable to the latest release (please leave a comment if you think otherwise).

Lets write some code!

The Code: A simple C program that reads the text file line-by-line, splits the string into values and then will inserts the data into an SQLite database. In this "baseline" version of the code, the database is created but we won't actually insert data:

    Baseline code to experiment with SQLite performance.

    Input data is a 28 Mb TAB-delimited text file of the
    complete Toronto Transit System schedule/route info 

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <string.h>
#include "sqlite3.h"

#define INPUTDATA "C:\\TTC_schedule_scheduleitem_10-27-2009.txt"
#define DATABASE "c:\\TTC_schedule_scheduleitem_10-27-2009.sqlite"
#define BUFFER_SIZE 256

int main(int argc, char **argv) {

    sqlite3 * db;
    sqlite3_stmt * stmt;
    char * sErrMsg = 0;
    char * tail = 0;
    int nRetCode;
    int n = 0;

    clock_t cStartClock;

    FILE * pFile;
    char sInputBuf [BUFFER_SIZE] = "\0";

    char * sRT = 0;  /* Route */
    char * sBR = 0;  /* Branch */
    char * sVR = 0;  /* Version */
    char * sST = 0;  /* Stop Number */
    char * sVI = 0;  /* Vehicle */
    char * sDT = 0;  /* Date */
    char * sTM = 0;  /* Time */

    char sSQL [BUFFER_SIZE] = "\0";

    /* Open the Database and create the Schema */
    sqlite3_open(DATABASE, &db);
    sqlite3_exec(db, TABLE, NULL, NULL, &sErrMsg);

    /* Open input file and import into Database*/
    cStartClock = clock();

    pFile = fopen (INPUTDATA,"r");
    while (!feof(pFile)) {

        fgets (sInputBuf, BUFFER_SIZE, pFile);

        sRT = strtok (sInputBuf, "\t");     /* Get Route */
        sBR = strtok (NULL, "\t");          /* Get Branch */    
        sVR = strtok (NULL, "\t");          /* Get Version */
        sST = strtok (NULL, "\t");          /* Get Stop Number */
        sVI = strtok (NULL, "\t");          /* Get Vehicle */
        sDT = strtok (NULL, "\t");          /* Get Date */
        sTM = strtok (NULL, "\t");          /* Get Time */



    fclose (pFile);

    printf("Imported %d records in %4.2f seconds\n", n, (clock() - cStartClock) / (double)CLOCKS_PER_SEC);

    return 0;

The "Control"

Running the code as-is doesn't actually perform any database operations, but it will give us an idea of how fast the raw C file IO and string processing operations are.

Imported 864913 records in 0.94 seconds

Great! We can do 920 000 inserts-per-second, provided we don't actually do any inserts :-)

The "Worst-Case-Scenario"

We're going to generate the SQL string using the values read from the file and invoke that SQL operation using sqlite3_exec:

sprintf(sSQL, "INSERT INTO TTC VALUES (NULL, '%s', '%s', '%s', '%s', '%s', '%s', '%s')", sRT, sBR, sVR, sST, sVI, sDT, sTM);
sqlite3_exec(db, sSQL, NULL, NULL, &sErrMsg);

This is going to be slow because the SQL will be compiled into VDBE code for every insert and every insert will happen in it's own transaction. How slow?

Imported 864913 records in 9933.61 seconds

Yikes! 1 hour and 45 minutes! That's only 85 inserts-per-second.

Using a Transaction

By default SQLite will evaluate every INSERT / UPDATE statement within a unique transaction. If performing a large number of inserts, it's advisable to wrap your operation in a transaction:

sqlite3_exec(db, "BEGIN TRANSACTION", NULL, NULL, &sErrMsg);

pFile = fopen (INPUTDATA,"r");
while (!feof(pFile)) {


fclose (pFile);

sqlite3_exec(db, "END TRANSACTION", NULL, NULL, &sErrMsg);

Imported 864913 records in 38.03 seconds

That's better. Simply wrapping all of our inserts in a single transaction improved our performance to 23 000 inserts-per-second.

Using a Prepared Statement

Using a transaction was a huge improvement, but recompiling the SQL statement for every insert doesn't make sense if we using the same SQL over-and-over. Let's use sqlite3_prepare_v2 to compile our SQL statement once and then bind our parameters to that statement using sqlite3_bind_text:

/* Open input file and import into Database*/
cStartClock = clock();

sprintf(sSQL, "INSERT INTO TTC VALUES (NULL, @RT, @BR, @VR, @ST, @VI, @DT, @TM)");
sqlite3_prepare_v2(db,  sSQL, BUFFER_SIZE, &stmt, &tail);

sqlite3_exec(db, "BEGIN TRANSACTION", NULL, NULL, &sErrMsg);

pFile = fopen (INPUTDATA,"r");
while (!feof(pFile)) {

    fgets (sInputBuf, BUFFER_SIZE, pFile);

    sRT = strtok (sInputBuf, "\t");     /* Get Route */
    sBR = strtok (NULL, "\t");      /* Get Branch */    
    sVR = strtok (NULL, "\t");      /* Get Version */
    sST = strtok (NULL, "\t");      /* Get Stop Number */
    sVI = strtok (NULL, "\t");      /* Get Vehicle */
    sDT = strtok (NULL, "\t");      /* Get Date */
    sTM = strtok (NULL, "\t");      /* Get Time */

    sqlite3_bind_text(stmt, 1, sRT, -1, SQLITE_TRANSIENT);
    sqlite3_bind_text(stmt, 2, sBR, -1, SQLITE_TRANSIENT);
    sqlite3_bind_text(stmt, 3, sVR, -1, SQLITE_TRANSIENT);
    sqlite3_bind_text(stmt, 4, sST, -1, SQLITE_TRANSIENT);
    sqlite3_bind_text(stmt, 5, sVI, -1, SQLITE_TRANSIENT);
    sqlite3_bind_text(stmt, 6, sDT, -1, SQLITE_TRANSIENT);
    sqlite3_bind_text(stmt, 7, sTM, -1, SQLITE_TRANSIENT);




fclose (pFile);

sqlite3_exec(db, "END TRANSACTION", NULL, NULL, &sErrMsg);

printf("Imported %d records in %4.2f seconds\n", n, (clock() - cStartClock) / (double)CLOCKS_PER_SEC);


return 0;

Imported 864913 records in 16.27 seconds

Nice! There's a little bit more code (don't forget to call sqlite3_clear_bindings and sqlite3_reset) but we've more than doubled our performance to 53 000 inserts-per-second.

PRAGMA synchronous = OFF

By default SQLite will pause after issuing a OS-level write command. This guarantees that the data is written to the disk. By setting synchronous = OFF, we are instructing SQLite to simply hand-off the data to the OS for writing and then continue. There's a chance that the database file may become corrupted if the computer suffers a catastrophic crash (or power failure) before the data is written to the platter:

/* Open the Database and create the Schema */
sqlite3_open(DATABASE, &db);
sqlite3_exec(db, TABLE, NULL, NULL, &sErrMsg);
sqlite3_exec(db, "PRAGMA synchronous = OFF", NULL, NULL, &sErrMsg);

Imported 864913 records in 12.41 seconds

The improvements are now smaller, but we're up to 69 600 inserts-per-second.

PRAGMA journal_mode = MEMORY

Consider storing the rollback journal in memory by evaluating PRAGMA journal_mode = MEMORY. Your transaction will be faster, but if you lose power or your program crashes during a transaction you database could be left in a corrupt state with a partially-completed transaction:

/* Open the Database and create the Schema */
sqlite3_open(DATABASE, &db);
sqlite3_exec(db, TABLE, NULL, NULL, &sErrMsg);
sqlite3_exec(db, "PRAGMA journal_mode = MEMORY", NULL, NULL, &sErrMsg);

Imported 864913 records in 13.50 seconds

A little slower than the previous optimization at 64 000 inserts-per-second.

PRAGMA synchronous = OFF and PRAGMA journal_mode = MEMORY

Let's combine the previous two optimizations. It's a little more risky (in case of a crash), but we're just importing data (not running a bank):

/* Open the Database and create the Schema */
sqlite3_open(DATABASE, &db);
sqlite3_exec(db, TABLE, NULL, NULL, &sErrMsg);
sqlite3_exec(db, "PRAGMA synchronous = OFF", NULL, NULL, &sErrMsg);
sqlite3_exec(db, "PRAGMA journal_mode = MEMORY", NULL, NULL, &sErrMsg);

Imported 864913 records in 12.00 seconds

Fantastic! We're able to do 72 000 inserts-per-second.

Using an In-Memory Database

Just for kicks, let's build upon all of the previous optimizations and redefine the database filename so we're working entirely in RAM:

#define DATABASE ":memory:"

Imported 864913 records in 10.94 seconds

It's not super-practical to store our database in RAM, but it's impressive that we can perform 79 000 inserts-per-second.

Refactoring C Code

Although not specifically an SQLite improvement, I don't like the extra char* assignment operations in the while loop. Let's quickly refactor that code to pass the output of strtok() directly into sqlite3_bind_text() and let the compiler try to speed things up for us:

pFile = fopen (INPUTDATA,"r");
while (!feof(pFile)) {

    fgets (sInputBuf, BUFFER_SIZE, pFile);

    sqlite3_bind_text(stmt, 1, strtok (sInputBuf, "\t"), -1, SQLITE_TRANSIENT); /* Get Route */
    sqlite3_bind_text(stmt, 2, strtok (NULL, "\t"), -1, SQLITE_TRANSIENT);  /* Get Branch */
    sqlite3_bind_text(stmt, 3, strtok (NULL, "\t"), -1, SQLITE_TRANSIENT);  /* Get Version */
    sqlite3_bind_text(stmt, 4, strtok (NULL, "\t"), -1, SQLITE_TRANSIENT);  /* Get Stop Number */
    sqlite3_bind_text(stmt, 5, strtok (NULL, "\t"), -1, SQLITE_TRANSIENT);  /* Get Vehicle */
    sqlite3_bind_text(stmt, 6, strtok (NULL, "\t"), -1, SQLITE_TRANSIENT);  /* Get Date */
    sqlite3_bind_text(stmt, 7, strtok (NULL, "\t"), -1, SQLITE_TRANSIENT);  /* Get Time */

    sqlite3_step(stmt);     /* Execute the SQL Statement */
    sqlite3_clear_bindings(stmt);   /* Clear bindings */
    sqlite3_reset(stmt);        /* Reset VDBE */

fclose (pFile);

Note: We are back to using a real database file. In-memory databases as fast but not necessarily practical

Imported 864913 records in 8.94 seconds

A slight refactoring to the string processing code used in our parameter binding has allowed us to perform 96 700 inserts-per-second. I think it's safe to say that this is plenty fast. As we start to tweak other variables (i.e. page size, index creation, etc.) this will be our benchmark.

Summary (so far)

I hope you're still with me! The reason we started down this road is that bulk-insert performance varies so wildly with SQLite and it's not always obvious what changes need to be made to speed-up our operation. Using the same compiler (and compiler options), the same version of SQLite and the same data we've optimized our code and our usage of SQLite to go from a worst-case scenario of 85 inserts-per-second to over 96 000 inserts-per-second!


Before we start measuring SELECT performance, we know that we'll be creating indexes. It's been suggested in one of the answers below that when doing bulk inserts, it is faster to create the index after the data has been inserted (as opposed to creating the index first then inserting the data). Let's try:

Create Index then Insert Data

sqlite3_exec(db, "CREATE  INDEX 'TTC_Stop_Index' ON 'TTC' ('Stop')", NULL, NULL, &sErrMsg);
sqlite3_exec(db, "BEGIN TRANSACTION", NULL, NULL, &sErrMsg);

Imported 864913 records in 18.13 seconds

Insert Data then Create Index

sqlite3_exec(db, "END TRANSACTION", NULL, NULL, &sErrMsg);
sqlite3_exec(db, "CREATE  INDEX 'TTC_Stop_Index' ON 'TTC' ('Stop')", NULL, NULL, &sErrMsg);

Imported 864913 records in 13.66 seconds

As expected, bulk-inserts are slower if one column is indexed, but it does make a difference if the index is created after the data is inserted. Our no-index baseline is 96 000 insert-per-second. Creating the index first then inserting data gives us 47 700 inserts-per-second, whereas inserting the data first then creating the index gives us 63 300 inserts-per-second.

I'd gladly take suggestions for other scenarios to try... And will be compiling similar data for selects soon.

Answered By: Snazzer ( 84)

Several tips:

  1. Put inserts/updates in a transaction
  2. Consider a less paranoid journal mode (pragma journal_mode). There is NORMAL, and then there OFF which can significantly increase insert speed if you're not too worried about the database possibly getting corrupted if the OS crashes. If your application crashes the data should be fine.
  3. Playing with page sizes makes a difference as well (PRAGMA page_size). Having larger page sizes can make reads and writes go a bit faster as larger pages are held in memory. Note that more memory will be used for your database.
  4. If you have indices, consider calling CREATE INDEX after doing all your inserts. This is significantly faster than creating the index and then doing your inserts.
  5. You have to be quite careful if you have concurrent access to SQLite, as the whole database is locked when writes are done, and although multiple readers are possible, writes will be locked out.
  6. Take advantage of saving space...smaller databases go faster. For instance, if you have key value pairs, try making the key an INTEGER PRIMARY KEY if possible, which will replace the implied unique row number column in the table.
  7. If you are using multiple threads, you can try using the shared page cache, which will allow loaded pages to be shared between threads, which can avoid expensive I/O calls.

I've also asked similar questions here and here.


SQLite is a single-file based database and MySQL is a normal database. That's great, but I'm not sure which is faster where or better for what...what are the pros and cons of each option?

Answered By: Justin Standard ( 219)

SQLite is great for testing and prototyping, or for embedding in applications. MySQL is worthy of (large scale) production environments.

This site has guidance on when to use SQLite

Here is my personal summary:


  • easier to setup
  • great for temporary (testing databases)
  • great for rapid development
  • great for embedding in an application
  • doesn't have user management
  • doesn't have many performance features
  • doesn't scale well.


  • far more difficult/complex to set up
  • better options for performance tuning
  • can scale well if tuned properly
  • can manage users, permissions, etc.

I have a project in which I'd like to use some of the .NET 4.0 features but a core requirement is that I can use the System.Data.SQLite framework which is compiled against 2.X. I see mention of this being possible such as the accepted answer here but I don't see how to actually achieve this.

When I just try and run my 4.0 project while referencing the 2.X assembly I get:

Mixed mode assembly is built against version 'v2.0.50727' of the runtime and cannot be loaded in the 4.0 runtime without additional configuration information.

What "additional configuration" is necessary?

Answered By: Reed Copsey ( 335)

In order to use a CLR 2.0 mixed mode assembly, you need to modify your App.Config file to include:

<?xml version="1.0"?>
  <startup useLegacyV2RuntimeActivationPolicy="true">
    <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/>

The key is the useLegacyV2RuntimeActivationPolicy flag. This causes the CLR to use the latest version (4.0) to load your mixed mode assembly. Without this, it will not work.

Note that this only matters for mixed mode (C++/CLI) assemblies. You can load all managed CLR 2 assemblies without specifying this in app.config.

Scott Bennett-McLeish

I'm attracted to the neatness that a single file database provides. What driver/connector library is out there to connect and use SQLite with Java.

I've discovered a wrapper library,, but are there other more prominent projects available?

Answered By: Peter Hoffmann ( 125)

The wiki lists some more wrappers:


What SQL can be used to list the tables, and the rows within those tables, in a SQLite database file once i've ATTACHed it on the sqlite3 command line tool?

Answered By: Lasse V. Karlsen ( 160)

It appears you need to go through the *sqlite_master* table, like this:

SELECT * FROM dbname.sqlite_master WHERE type='table';

And then manually go through each table with a SELECT or similar to look at the rows.

The .DUMP and .SCHEMA commands doesn't appear to see the database at all.


I'd sort of like to use SQLite from within C#.Net, but I can't seem to find an appropriate library. Is there one? An official one? Are there other ways to use SQLite than with a wrapper?

Answered By: ine ( 223)

Yes, you can find a wrapper here:

"System.Data.SQLite is the original SQLite database engine and a complete ADO.NET 2.0 provider all rolled into a single mixed mode assembly. It is a complete drop-in replacement for the original sqlite3.dll (you can even rename it to sqlite3.dll). Unlike normal mixed assemblies, it has no linker dependency on the .NET runtime so it can be distributed independently of .NET."

It even supports mono.

UPDATE New fork available at


How do I, reliably, check in SQLite, whether a particular user table exists?

I am not asking for unreliable ways like checking if a "select *" on the table returned an error or not ( is this even a good idea? ).

The reason is like this:

In my program, I need to create and then populate some tables if they do not exist already.

If they do already exist, I need to update some tables.

Should I take some other path instead to signal that the tables in question have already been created - say for example, by creating/putting/setting a certain flag in my program initialization/settings file on disc or something?

Or does my approach make sense?

Answered By: PoorLuzer ( 219)

Missed that FAQ entry.

Anyways, for future reference, the complete query is:

SELECT name FROM sqlite_master WHERE type='table' AND name='table_name';

Anyone working on the Android ('gPhone') have or know of a place where I can find a good ORM tool for it? The code is written in Java, and the database is SQLite. What I would like to find is a tool that given the object definition, can auto-generate the tables and the CRUD functions (that would be awesome), or, barring that, a tool that can take the table definition, the object definition, and auto-generate the CRUD functionality. The rub is that all of this must happen within the Android framework, which has its own conventions as to how database access works.

Answered By: AlexCuse ( 41)

This thread might give you some to explore: Lightweight Alternatives to Hibernate


Is there any good open source SQLite database manager around?

I am using sqlitebrowser now but I have to say the interface is not really friendly so I am looking for something better.

Answered By: Sinan &#220;n&#252;r ( 56)

sqlite-manager extension for Firefox has worked for me. Uses the Mozilla Public License.